public:the_equivalence_of_svd_and_eigendecomposition
The equivalence of SVD and eigendecomposition
PCA originally formulated to use eigendecomposition, but we can use SVD instead.
a = rand(4, 3); a = a - mean(a); [U, S, V_svd] = svd(a); [V_eig, D, W ]= eig(a * a'); % a == U * S * V_svd' % a * a' == U * S * V_svd' * V_svd * S' * U' % V_eig == W % S.^2 == D (subject to the different ordering of eigenvalues)
public/the_equivalence_of_svd_and_eigendecomposition.txt · Last modified: 2019/06/04 12:39 by fangfufu